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Abstract
It is argued that the large discrepancy (×2 in strontium barium niobate SBN)
between experimental values from different kinds of experiment for the critical
exponent β describing the temperature evolution of the order parameter in
relaxors such as SBN arises from the fact that such ferroelectric systems,
assumed to be [3D] random field Ising models by Kleemann et al (2002
Europhys. Lett. 57 14), are not in thermal equilibrium. These arguments
are illustrated primarily in SBN61—Srx Ba1−x Nb2O6:Ce with x = 0.61 and
Ce = ca. 0.7%. An alternative model of Levanyuk and Sigov for defect-
dominated dynamics is invoked. The inferred dimensionality of domain walls
is also addressed, and the possibility of a d = 5/2 universality class controlled
by domain dimensionality is considered as an alternative to defect dynamics;
inter alia, four sets of d = 5/2 exponents (with β = 1/2, 1/3, and 1/4) satisfy
all known scaling and hyperscaling equalities. The present results support the
scepticism about SBN critical exponents emphasized by Chao et al (2005 Phys.
Rev. B 72 134105).

1. Introduction

Recently a series of papers dealing with critical (fluctuation-dominated) exponents in
ferroelectrics has appeared. These emphasize two systems: (a) SrTiO3 with O-18, for which
we showed elsewhere that quantum criticality exponents are inappropriate to estimate the
order parameter exponent β [1, 2]; and (b) the uniaxial relaxor ferroelectric strontium barium
niobate, a tungsten bronze structure of formula Srx Ba1−x Nb2O6, usually grown for nonlinear
optical device purposes with x = 0.61 and Ce doping (ca. 0.7%). The original studies
of the temperature dependence of the order parameter (spontaneous polarization P) in this
material and the related tungsten bronze Ba2NaNb5O15 were by optical techniques [3–5], and
for SBN:Ce yielded two independent values [6, 7] of 1–2β = 0.28 (steady state) and 0.34
(transient)—hence β = 0.36 and 0.33, each with uncertainties of ±0.02. It was suggested
that these data were compatible with mean field behaviour near a tricritical point, which
theoretically should yield β = 1/4 exactly at the tricritical point and 0.25 < β < 0.50 on
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the second-order side of the tricritical point. (A small applied field of E = 0.32 kV cm−1 was
required to reach the tricritical point exactly in Ba2NaNb5O15.) Here β is defined as

P(T ) = [(Tc − T )/Tc]β = τ−β, (1)

where Tc is the Curie temperature, which is also the transition temperature for a second order
or tricritical ferroelectric transition; τ is reduced temperature.

The second, subsequent set of studies of critical exponents was carried out by more
traditional electrical measurements [8–12], determining exponents β, γ and γ ′ [8], the latter
characterizing electrical susceptibility as

χ(T ) = [(T − Tc)/Tc]−γ = τ−γ , (2)

where primes denote values below Tc and unprimed values above Tc. Thus we have two groups
of research reports on the same critical exponents in the same material; however, these groups
obtained conflicting values. A more complete set of exponents, having mean field tricritical
values (α = 1/2, β ≈ 1/4, γ = 1, and δ = 5) had been obtained [13–15] in the structurally
related tungsten bronze Ba2NaNb5O15 for α (specific heat exponent), β, γ and δ (dependence
of P upon applied field E along the critical isotherm); these agreed with the β values in SBN
from the same group. However, [8] obtained very different values for SBN: γ = 1.85 ± 0.05,
δ = 1.53 ± 0.13 and β = 0.14 ± 0.03 near (but not very near—ca. 20 K) Tc. They interpreted
their experimental results in terms of a [3D] random field Ising model (RFIM). We show
below that their values strongly violate the Widom equation, expressed in scaling theory as
an equality, and violate other scaling and hyperscaling equalities as well. This is a more serious
criticism than the earlier observation by Fisher that RFIM violates the Josephson equation of
hyperscaling [16].

2. Problems with critical exponents in random-field Ising models (RFIM)

Other authorities had previously pointed out ‘the failure of “imperfect” scaling’ in their
theoretical treatment of systems with defects near phase transitions [17, 18] and that even
the idea of true critical (fluctuation-dominated) exponents from random field Ising models
below Tc is an oxymoron, because such systems are not in thermal equilibrium. Among other
complications, relaxors such as SBN may exhibit nano-domain-like precursors 20 K above
Tc, well into the paraelectric phases. Nano-domains can act as defects. Levanyuk and Sigov
state in their text [17] regarding field-cooled measurements ‘Thus the Ising system with defects
of the random local field type (field-cooled state) is in fact a nonequilibrium one in the low
temperature region of the non-symmetrical phase. Therefore it is hardly possible to interpret
the critical behaviour of such systems in terms of critical indices found within equilibrium
statistical mechanics’. This view is supported by other experts, including Blinc [19] and
Salje [20].

The question then arises of whether the exponents fitted empirically in SBN are non-
universal, and if they apply asymptotically as T approaches Tc. Other ferroelectric systems
are well known in which a non-asymptotic point defect theory [17–23] gives exponents in good
accord with experiments [24–27], but these exponents do not belong to a universality class,
are not valid exactly at Tc, and do not need to satisfy any thermodynamic inequalities, such as
those of Rushbrooke, Griffiths, etc [28–31]. A good example is the value α = 1.5 in SrTiO3 at
105 K [32, 33] or the values 2.2–5.7 for the exponent ζ describing ultrasonic attenuation and
α � 1.0 for specific heat in BaMnF4, KMnF3, or CsH2PO4 [34, 35]. Note that the anomalous
part of the specific heat�C(T ) is proportional to that of the sound velocity�v(T )—(Janovec–
Pippard relationship) [36, 37].
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Earlier work on the changes in effective critical exponents due to spatial inhomogeneities
in local electric polarization P (including those due to defects) was by Larkin, Pikin and
Khmelnitskii [38–40], which forms the background for [17, 18]. In the present paper I consider
both point defects [17, 18] and extended defects (including domain walls).

3. Reconciliation

3.1. Scaling

I show below that the values β and γ from Kleemann et al are implausible [8, 41, 42], and
combined with their value of δ are incompatible with thermodynamic scaling.

First we note that the values γ = 1.85 ± 0.05 and β = 0.14 ± 0.03 given in [8–12, 41, 42]
for SBN61 and attributed to a random field [3D] Ising model require an implausible value of
δ ≈ 13 to satisfy the Widom equation as an equality (required by scaling theory); note that
although δ = 15 in the usual [2D] Ising model, it is δ = 5 in [3D]:

γ ′ = β(δ − 1); (3)

but both of these values of δ strongly disagrees with the experimental value [9] of δ =
1.53 ± 0.13 and the theoretical value of δ = 1.8 required [8] for a [3D] random field Ising
model. This in itself, from static scaling, is sufficient to show that the [3D] RFIM values of
δ, β , and γ from [8] are physically not self-consistent as true (thermal-equilibrium) critical
exponents; below we show from hyperscaling that a value of η < 0 is required even if only β
and γ are taken from [8], which is also implausible.

Their values of β and γ also require an equally implausible α′ < 0 to satisfy the Griffiths
equation:

α′ + 2β + γ ′ = 2 (4a)

as a scaling equality (note than in scaling theory α = α′ and γ = γ ′). We emphasize that
the values of β and γ from Kleemann et al [8–12] (even without their value δ = 1.53, which
prohibits any solutions satisfying static scaling) inserted into (4) yield

α′ = −0.13 ± 0.06. (4b)

The negative value of α′ would be unique among ferroelectrics. As one possible route to
reconciling these values, we note that γ ′ = 5/2 in the defect theory [17, 18], so that as Tc is
approached γ ′ varies from 1 (mean field) to 2.5; it is not unreasonable that the reported [8]
value of ca. 1.85 (at 350 K) or even >2 could be inferred over a region of T near Tc. In this
context it is important to point out that Kleemann et al actually measured [8] γ = 2.1 below
T = 350 K (Tc = 320 K), not 1.85, and that this value is close to the defect predictions of
2.5; they interpreted this as due to domain wall contributions (a kind of defect) and thereby
justified values greater than the 1.97 predicted by RFIM. Kleemann et al refer [8] to their value
of γ = 2.1 as ‘unreasonably large’, yet we see that it is quite close to (and smaller than) the
defect model prediction of 2.5. Similarly, the specific heat exponent α in the defect-dominated
regime is theoretically 1.0–1.5, which has been previously observed but misinterpreted in both
CsH2PO4 and KMnF3 [34, 35]; see [26]. In some crystals, such as ferroelectric BaMnF4,
it is easy to discriminate between the defect regime below the transition temperature (due
to antiphase boundaries APBs in incommensurate BaMnF4), where α′ = 1.1 ± 0.1, and
the mean-field tricritical regime (defect-free) above Tc where the APBs disappear and hence
α = 0.54 ± 0.05 [27].
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3.2. Hyperscaling

Unlike scaling theory, hyperscaling explicitly involves the dimensionality of the system and
consequently other critical exponents. We showed recently [1] that hyperscaling requires as an
equality

γ ′ − 2β = ν[4 − d − 2η], (5)

where ν is the critical exponent in the correlation function and η, that in the structure factor
S(q). The standard [2D] Ising model has γ ′ = γ = 7/4; β = 1/8; ν = ν ′ = 1; and η = 1/4;
these values satisfy (5). If we consider

γ = (2 − η)ν (6)

which is equation (12.29) of Stanley’s text [30] and equation (5.4.10) of the text by Chaikin
and Lubensky [31] and also

d − 2 + η = 2β/ν, (7)

which is equation (12.28) in Stanley and equation (5.4.15) in Chaikin and Lubensky, we find
from (6) and (7) for d = 3 that the experimental values of β and γ from [8] yield a single
solution: ν = 0.7 and η = −0.6 (ν = 0.7 is very plausible and indeed 0.68 was obtained
experimentally [33] for thin surface layers of SrTiO3; but η = −0.6 is an implausible value,
since η > 0 for all solvable exact models and η < 0 would cause an problems for the structure
factor S(q) and its Fourier transform, the pair correlation function G(r, τ )). One problem with
η < 0 is the Buckingham–Gunton inequality d(δ − 1)/(δ + 1) � 2 − η, which rigorously
requires for d = 3 that δ � 5 (typical for [3D] models and inclusive of the 1.8 in RFIM)
implies η > 0. Hence, even ignoring the value [8] of δ = 1.55, the values of β and γ alone
from [8] for d = 3 violate hyperscaling [16].

The exponent η is defined as the wavevector dependence of the correlation function

G(τ, q) = G0q−2+η. (8)

Fisher [43–45] has discussed the fact that η is not negative (0 � η � 2), more readily seen by
Fourier transforming it to G(r, τ ). For lattice gas models η is one-quarter in [2D] and one-16th
in [3D], and for fluids experimentally 0 < η � 0.2.

Therefore, since δ = 1.8, β = 0.15 and γ = 1.85 fail to satisfy the scaling equations
(and parenthetically also η < 0 is required), we have in equations (4)–(8) a reductio ad
absurdum proof that the SBN critical exponents of Kleemann et al [8] cannot satisfy random
field Ising models and scaling for the claimed [3D] dimensionality. This suggests that the
correct explanation may lie in models, such as the Levanyuk–Sigov defect model, which do
not need to satisfy scaling or thermodynamic inequalities (since they are not asymptotically
valid as T ⇒ Tc). And it is compatible with the caveat from Levanyuk and Sigov that
experimental field-cooled values cannot be compared with those of equilibrium statistical
mechanical models, since the former are not in thermal equilibrium.

3.3. Thermal focusing experiments [3–5]

3.3.1. Dependence upon β . It is important to emphasize that the temperature dependence
of the diameter of the transmitted beam in the thermal focusing experiments on SBN varies,
assuming a Kerr-like effect on the index of refraction n, �n = m P2 (proportional to the
square of the polarization), as τ 2β−1 [5, 6], only if any divergence in thermal conductivity κ
is negligible. Although this usually appears to be the case in ferroelectrics, data are rarely
published for κ(T ) near Tc. If β = 1/2 (mean field second-order transition), there is no
exponential temperature dependence at all (2β − 1 = 0), often manifest as a step discontinuity



Absence of true critical exponents in relaxor ferroelectrics: the case for defect dynamics 7127

or a logarithmic divergence. This is readily ruled out by all experiments on SBN. Similarly
β cannot be >1/2, or the diffraction ring diameter would decrease as Tc is approached, rather
than increase. Both the quasistatic thermal focusing measurements and the dynamic transients
yield, independently [3–5], values of β = 0.33–0.36. These empirical exponents satisfy
the data over a wide temperature range—of order 20 K. This in itself militates against a
true critical (fluctuation-dominated) regime, according to the Ginzburg criterion, whereas [17]
(p 75) calculates that the defect model will dominate displacive systems between ca. 2 K and a
few tens of degrees from Tc. By comparison, Kleemann originally published [41] β = 0.06 and
then subsequently, from Zalar and Blinc [42], β = 0.15. The latter value is from NMR, but the
Ljubljana authors have privately suggested [20] that the transition might be slightly first order,
i.e. near a tricritical point, so that their apparent sharp increase (and hence small exponent)
may be due to a small discontinuity (we note parenthetically that the relaxor lead magnesium
niobate–lead titanate PMN-PT also has a slightly first-order transition [46, 47]). Kleemann et al
reported an order parameter relaxation time of 3.5 ms, which is in the same range as the 16 ms
thermal relaxation time reported by O’Sullivan et al [48]. This may result in coupling between
order parameter fluctuations and entropy fluctuations, complicating any effective exponent.
Values of β of order 0.15 are totally incompatible with the thermal focusing data. This suggests
that the two kinds of experiments may not both be measuring the same β; i.e., there may be
empirical exponents here that arise from extrinsic causes. We note that in the presence of
visible light, Gao et al have also shown [49–52] that Ce3+ + Nb5+ ⇒ Ce4+ + Nb4+ charge
transfer occurs in SBN:Ce on the same timescale (milliseconds) as the thermal relaxation
and order parameter relaxation. This is a possible explanation for why β differs in optical
measurements (strong visible light) and electrical measurements (in the dark or subdued room
light). Ce3+ ⇒ Ce4+ may additionally complicate any dynamics near Tc, since the ionic radii
differ, and further suggests defect models.

3.3.2. Inclusion of divergence in thermal conductivity κ in thermal focusing data. The angular
diameter θ(T ) of the slightly elliptical beam (outer ring) in thermal lensing is given for light
polarized along x and propagating along i = y or z by

θi(T ) ≈ (dnx/dT )/κii (T ), (9a)

where κ is the thermal conductivity tensor (i = y, z) and n, the index of refraction. Near
Tc [6, 53], suppressing subscripts,

(dn/dT )/κ(T ) ≈ [τ 2β−1/(κ(0)+�κτ−a)], (9b)

i.e., κ(T ) varies as κ(0) + �κ(T ), with �κ(T ) diverging weakly and becoming more
anisotropic as T approaches Tc. For liquids the transport properties, especially thermal
conductivity, are treated by mode–mode coupling theory. Unfortunately this approach yields
different exponents in different frequency regimes. Moreover, this model has not generally been
used to treat solids. In both SBN:Ce and Ba2NaNb5O15 the thermal conductivity is noticeably
anisotropic near Tc ([3] Chen et al, 1991; figure 8), so �κi j definitely has a measurable effect;
however, existing data from Xi et al [54, 55] suggest that it diverges only weakly near Tc in
ferroelectrics, so that �κ(T ) is only a small correction, which can be of either sign (negative
in LiNbO3 but positive in KLiSO4), usually a decrease in κ of ca. 10–20% [55].

3.3.3. Use of the spherical aberration threshold [56, 57]. We can also estimate the maximum
increase [55] in �κ at Tc as <50% of κ(300 K) by means of an equation for the onset of
spherical aberration in a thermal lens [56]:

P(threshold power) = 1.6λκ(T )T/(bLdn/dT ), (10)
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where λ is wavelength (514 nm); L, beam length in the sample (ca. 3 mm); b, absorption
coefficient (ca. 0.26 cm−1); dn/dT is the change in refractive index with temperature and is of
order 10−5–10−4 K−1 near Tc. This equation predicts an aberration threshold at 200 mW for
our collimated laser beam of ca. 20 µm, using κ(300 K) = 5.9 W K−1 m−1 [54], whereas the
measured threshold value [4] was 300 ± 20 mW. Therefore corrections for divergence in κ(T )
are unnecessary, because the inferred value [55] of κ(Tc) differs by �50% from κ(300 K); i.e.,
in (3)–(5), (13), κ(T ) � �κ(T ). As a semi-qualitative estimate, inclusion of an increase in
κ(T ) of order 50% at Tc in either Ba2NaNb5O15 or SBN will decrease slightly the inferred
value of β in the thermal focusing experiments from the reported values of 0.33–0.36 to nearer
0.25, compatible with a mean field tricritical model. Asymptotically �κ(T ) probably varies
as τ−2/3 [58–60], i.e. in (9b) a = 2/3. Thus, very close to Tc, the beam divergence might
vary as τ 2β−1/3; however, there is no evidence for this regime, where θ would actually decrease
as T approached Tc, in the experiments [3–5], which typically did not probe Tc − T < 1 K.
Nor is there any evidence that �κ > κ(300 K): the divergence in thermal conductivity κ(Tc)

is <1/2κ(300 K) and hence negligible to a first approximation. The absorption coefficient b
is observed not to be singular at Tc. Since it arises from thermal fluctuations near the Curie
temperature, the change in thermal conductivity can be quenched via a small field E of a few
kV cm−1 [55].

3.4. Predictions

3.4.1. Specific heat and ultrasonic attenuation. The models discussed above are readily
falsifiable. The defect model predicts that the T -dependence of the specific heat will scale
with an effective exponent α(def) = 2 − ν, which in the mean field is 1.5 and for the defect
ν = 1 is 1.0; and the ultrasonic attenuation exponent is ζ(def) = 5ν, which in the mean field
is 2.5 and for the defect ν = 1 is 5.0 (these values, both for α and ζ , have been found in
other ferroelectrics [26, 32–35, 61, 62]). These predictions should be checked for SBN. Note
that intrinsic mode–mode coupling theory gives [58, 59] quite different values of ζ = 1.0
(Heisenberg antiferromagnets or superfluids) to 1.33 (single-axis ferro- or anti-ferromagnets)
for ζ , about half the predicted defect minimum value of 2.5; this large ratio should make it easy
to discriminate between the two models. (The thermal focusing experiments yield β = 0.3,
incompatible with the data of Zalar even when the weak divergence in thermal conductivity is
included, and suggesting a mean field tricritical point; but such data are not capable of yielding
γ, α, or ζ .)

Defects can also theoretically produce other measurable experimental anomalies in
ferroelectrics, such as antisymmetric stress tensors, local rotations, and hence asymmetric
elastic coefficients Ci j �= C ji [63, 64], found experimentally. These are often non-equilibrium
and have net internal stresses and torques [25].

3.4.2. Other defect exponents: δ, ν, and η. One should consider the defect model predictions
for critical exponent δ, which characterizes the dependence of the order parameter P on an
applied conjugate field E along the critical isotherm Tc. Levanyuk and Sigov [17] do not
discuss this exponent, but their equations (p 72 of [17]) yield δ = 2. Experimentally, this
would be difficult to distinguish from the RFIM prediction of 1.8 (and [8] reports a compatible
δ = 1.53 ± 0.15). For barium sodium niobate, thermal focusing yielded a mean-field value
of δ = 5.0–5.1 [13], but no measurements were made on SBN in an applied field E . These
experiments are difficult; in materials with finite conduction it is difficult to vary field E without
changing temperature T away from the critical isotherm. Similarly, the prediction [17] for β is
that it is slightly reduced from mean field: β < 1/2 (p 74, [17]), which we express as 0.3–0.4 in
table 1. For the correlation length exponent η, Levanyuk and Sigov [17] show (p 104) that the
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Table 1. Empirical parameters for dimension d = 2.5. (Possible critical exponents (conventional
notation) satisfying scaling and hyperscaling theory equalities for fractional dimension d = 5/2
(these sets are not unique and were derived for sets 1 and 2 assuming ν = 1 as in the [2D] Ising
model; for set 3 by trying ν ≈ 2/3 as in [3D] Ising or Heisenberg models); for set 4, ν = 1/2, as in
the mean field. The Levanyuk–Sigov defect model results [17] are shown for comparison; these are
non-asymptotic at Tc and need not satisfy any thermodynamic (in)equalities (11)–(19), including the
dynamical onesa,b,c for ultrasonic attenuation, quasielastic scattering intensity, or thermal diffusion.)

Parameter Value (Set 1) (Set 2) (Set 3) (Set 4) Defect
(for d = 5/2) [2D]-Ising-like [2D]-Ising-like [3D]-Ising-like Mean-field-like model

Statics

Specific heat α = −1/2 α = −1/2 α = 1/3 α = 3/4 α = 3/2
Order parameter β = 1/2 β = 1/4 β = 1/3 β = 1/4 β ≈ 0.3–0.4
Susceptibility γ = 3/2 γ = 2 γ = 1 γ = 3/4 γ = 5/2

Critical isotherm δ = 4 δ = 9 δ = 4 δ = 4 δ = 2
Correlation length ν = 1 ν = 1 ν = 2/3 ν = 1/2 ν = 1
Pair correlation η = 1/2 η = 0 η = 1/2 η = 1/2 η = −2

Dynamics

Ultrasonic attenuationa ζ = 1/4 ζ = −1/4 ζ = 1/2 ζ = 3/2 ζ = 5ν
ζ = 2ν − γ + α/2 = 2.5–5.0
Landau–Placzek ratio ψ = 2 ψ = 5/2 ψ = 2/3 ψ = 1/4 ψ = 2
(Rayleigh/Brillouin)
ψ = γ − α

Thermal diffusivityb � = 1/2 � = 1 � = 1/3 � = 1/2 � = 3/2c

� = γ − ν

a ζ = 1 or 4/3 in intrinsic mode–mode coupling theory [30, 31].
b Typically � diverges as τ ν−γ = τ−2/3 in fluids [30, 31, 58, 59].
c Change in kinetic coefficient ([17], p 93) due to coupling of the order parameter with local temperature fluctuations.

x-ray scattering intensity I (τ ) = c(Aτ+ f q2)−2, rather than the usual I (τ ) = c(Aτ+ f q2)−1.
At Tc this implies I (q) varies as q−4. Since η is defined as I (Tc) = q−2+η, this implies a
defect η = −2. Note that this does not satisfy hyperscaling and indeed the defect theory is
asymptotically invalid at Tc. This contribution to x-ray intensities should be important only
near Tc, but [17] estimates its detection level as within Tc/100 = ca. 3 K, an experimentally
accessible regime. The exponent ν differs for different symmetries of defects in the Levanyuk–
Sigov theory (p 57) and is ν = 1 (Ising-like) for the simplest case of a dipole-like defect.

4. Domain wall dimensionality: the case for d = 2.5 Hausdorff dimension

As an alternative to the defect-dynamics model considered above, I can suggest a second
possible way of reconciling experiments and unusual exponents with theory by considering
the possibility that the dimensionality of ferroelectric transitions may be d = 2.5. Fractional
dimensionalities are not thermodynamically unphysical, although we note that Huse and Fisher
discuss [65] what they term the ‘unphysical dimensionality range 2 < d < 3’ in their treatment
of pair correlation functions for random field systems. This approach is not unrelated to the
defect mechanisms I discuss above, because the motivation is that domain walls in ferroelectrics
have dimension Dd = 2.5, and these walls are a kind of extended defect that may influence
or even control dynamical behaviour near Tc. I emphasize that the parameters given below are
purely empirical and are not the solutions of any microscopic model, such as an Ising model in
dimension 2.5.
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4.1. Why is d not 1.5?

The domain wall dimensionality Dd relates to other critical exponents evaluated experimentally.
Kleemann et al [66] have recently given an effective dimensionality of ferroelectric domain
walls of Dd = 1.5 in a three-dimensional system. A flat wall in a two-dimensional system has
Dd = 1, so Dd = 1.5 is plausible for [2D] systems; however, in three-dimensional systems
Dd � 2. Dd = 1.5 conflicts with the value of Dd = 2.5 measured by Paruch et al [67] and
with the roughening observed [68, 69] in other three-dimensional systems. True Hausdorff
dimensions of Dd < 2 for domain walls in [3D] systems seem physically implausible. It
is possible that the domain dimensionality dominates dynamics in ferroelectrics near Tc and
hence that a correct description of critical behaviour in ferroelectrics will require calculations
for dimensionality 2.5; to our knowledge this has not been done. I note parenthetically,
however [68], that there is always uncorrelated noise in the slow scan axis of an AFM
microscope which can under some circumstances give a spurious Hausdorff dimension of
2.5; but this does not seem to be applicable for the length scales (>100 nm) examined by
Paruch et al.

If we look at Fisher’s modifications [43–45] of the Ornstein–Zernike theory, we find
that for d = 2, the theory fails, as is well known (the prediction is that the correlation
function G(r, Tc) increases with distance r ). However, for d > 2, including fractional
d , G(r, Tc) ≈ ar (2−d) [65] and η is still defined as G(r, Tc) = ar (2−d−η) for d = 5/2.
In practice, for [3D] systems, this implies G(r) varies very slightly faster than r−1 (since
experimentally η = ca. 0.04, at least for fluids). If we naively insert d = Dd = 5/2
from Paruch et al into this Ornstein–Zernike formalism, we find that η is not unphysical,
and in fact yields a spherical fluctuation droplet in the Huse–Fisher random field model with
G(r, Tc) ≈ ar−1/2. In the original Ornstein–Zernike model, ν = 1 = γ /2 (which satisfies
hyperscaling equation (6). Therefore a second approach, alternative to defect dynamics, to the
apparent failure of experimental ferroelectric critical exponents to satisfy hyperscaling might
lie in the possibility of a d = 5/2 universality class, controlled by domain dimensionality,
and heretofore unexplored. For example, for d = 5/2 equations (6), (7) are satisfied inter
alia by γ = 3/2, ν = 1, η = 1/2; and table 1 gives a complete (non-unique) parameter set
satisfying as equalities all of the applicable scaling and hyperscaling relationships given by
Griffiths [29] or Stanley ([30] p 61). The value of δ = 4 is particularly interesting, because it
violates the conjecture in the past that δ is an odd integer for all analytically solvable models
(e.g., 3 for second-order mean field; 5 for tricritical mean field, Ornstein–Zernike, spherical
model, [3D] Ising, and [3D] Heisenberg; or 15 for [2D]-Ising). The values in table 1 are not
incompatible with some of the experiments reported on SBN or BNN (Ba2NaNb5O15), although
these ferroelectric transitions are probably tricritical, with in mean field β = 1/4, rather than
1/2; a second empirical set compatible with this value is also given in table 1. These values
form a set of purely empirical exponents resembling second-order mean field and tricritical
mean field with respect to order parameter exponent β , and were motivated by my assuming
ν = 1, as in the [2D] Ising model or the Ornstein–Zernike theory and/or β = 1/4 or 1/2. Note
that my values of η all satisfy Fisher’s additional and relatively obscure requirement [43–45]
that η � (2 − d/3), which is 1.17 for d = 5/2. Of course the caveat about comparing field-
cooled data with equilibrium thermodynamics discussed in section 2 above still requires careful
consideration for such a d = 5/2 ‘critical’ treatment.

4.2. Scaling equalities in d = 2.5 dimensions

All four d = 5/2 sets of exponents in table 1 satisfy the following thermodynamic inequalities
as exact scaling equalities, as well as the three hyperscaling equalities (5)–(7). These equations
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are not all independent, so in general there are infinitely many solutions. The second set
resembles experimental values in SBN (equations below assume exponents below Tc are equal
to those above, a static scaling assumption). Mathematica shows that all solutions for ν = 1
require the relationship β = 1/4 + η/2. If we require 0 < β < 2/3, this implies that there
are only these two solutions with integer or half-integer η, viz. η = 0 or 1/2. Note that
equations (5)–(7) and (11)–(19) actually contain only five independent (nonlinear) equations
in seven unknowns (α, β, γ, δ, ν, η, d); therefore, the set of solutions is infinite unless other
physical constraints are added: I included the four constraints γ � 1, 0 < β � 2/3, ν > 0,
and δ � 1, but not the Fisher constraint 0 � η � (2 − d/3), which is however satisfied for all
sets. I emphasize that these sets need not correspond to any physical model; they are merely
empirical parameters that do not violate scaling or hyperscaling. The constraint β � 2/3
follows the Heisenberg limit of β = 0.65 from Sheng and Salamon [71] or Bastie et al at
tricritical points [72].

Buckingham–Gunton d(δ − 1)/(δ + 1) = 2 − η (11)

Rushbrooke I dγ /(2 − α) = 2 − η (12)

Rushbrooke II α + 2β + γ = 2 (13)

Fisher (2 − η)ν = γ (14)

Josephson dν = 2 − α (15)

Griffiths I α + β(1 + δ) = 2 (16)

Griffiths II γ (δ + 1) = (2 − α)(δ − 1) (17)

Widom γ = β(δ − 1) (18)

Stanley β(2 − α + γ ) = (2 − α − β)(2 − α − γ ). (19)

4.2.1. Fractional dimension d = 2.5 solutions with ‘classical’ ν = 1/2 values. For d = 2.5
and a mean-field-like exponent ν = 1/2, the Josephson equation (15) yields α = 3/4.
Constraining the equations above to d = 5/2, α = 3/4, and ν = 1/2 yields an infinite number
of solutions, of which the only one with half-integer values is η = 1/2, β = 1/4, δ = 4, and
γ = 3/4, shown as set 4 in table 1. This resembles the mean-field tricritical solution, with
which it shares values of β, ν, and γ .

4.2.2. Fractional dimension d = 2.5 solutions with ν ≈ 2/3. The [3D] Ising and Heisenberg
models both have ν ≈ 0.64–0.70. Therefore it is useful to look for [3D]-like solutions for
d = 2.5 to compare with the [2D]-Ising-like solutions in table 1. I find that at least one
solution does exist with ν ≈ 2/3 and moreover that it has β ≈ 1/3, as in the [3D] Ising
(β ≈ 5/16 = 0.3125) or [3D] Heisenberg model (β ≈ 0.345); this is set 3 in table 1.

4.2.3. Comments on dynamic parameters in table 1. In the mean field ζ = 5/2; for ν = 1,
ζ = 5. ζ is often ‘large’ experimentally: ζ = 2.2 ± 0.3 ≈ 5/2 for the longitudinal mode in
BaMnF4 experiments, and for the transverse modes, ζ = 3.9 ± 0.1 and 5.7 ± 0.3 [61, 62]. In
each case there is better agreement with defect theory than with ζ = 1 or 4/3 from fluctuation
(critical) theory. The fact that transverse and longitudinal modes have different defect responses
is explained by Yermolov et al [73, 74].

Experimental values for the Landau–Placzek ratio for ferroelectric KH2PO4 are ψ =
1.5 ± 0.2 and are attributed to defects [75]; for ferroelectric KH3(SeO3)2 with deuterium
defects unambiguously identified as responsible, ψ = 0.95 ± 0.05 [76]; and for ferroelectric
lead germanate ψ = 1.0 ± 0.2 [77]. For fluids, these are also about 1.0: experimentally
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ψ = 0.95 ± 0.15 [78] and 1.02 ± 0.03 [79]; and the theoretical intrinsic fluid value is
1.06 ± 0.05 [80].

Both thermal and electrical conductivity change at Tc [81]. The electrical resistivity
diverges near Tc due to both soft mode scattering [82] and defects [83].

5. Conclusions

The fitting of critical exponents for SBN [6] to a [3D] random field Ising model violates static
scaling relationships (e.g., the Widom equation) for the claimed values of β, γ, δ; and even
the values of β and γ alone, without δ, violate hyperscaling for η (yielding η < 0, which
according to Fisher [43–45] is unphysical). β = 0.15 is also incompatible with optical data for
β [3–5]. Evaluation of critical exponents is moreover not justified for field-cooled data because
these are not in thermal equilibrium [17, 18]. The suggested reconciliation is that the SBN
data are dominated by defect dynamics [17, 18, 22, 23], perhaps involving the Ce doping. The
Levanyuk–Sigov defect model predicts δ = 2, β � 0.5, γ = 2.5, which are not in complete
disagreement with the SBN experimental values of δ = 1.53 ± 0.15 and γ = 1.85–2.1 from
Kleemann et al [8], and β = 0.3 from Scott et al [3–5].

An alternative possibility is that a new universality class with fractional dimensionality
5/2, corresponding to the domain dimensionality, might be invoked; I give four empirical sets
of values for the common critical exponents which satisfy scaling and hyperscaling equalities
for this case, as well as satisfying the Fisher relationship η < (2−d/3). These arguments about
defect dynamics or fractional dimensionality are not wholly unrelated, because it is supposed
that any fractional dimensionality present might arise from the dimensionality of the domain
walls, which are themselves a kind of extended defect. My conclusions about inapplicability of
RFIM critical exponents in SBN are strongly supported by the recent pyroelectric polarization
studies of Chao et al [84, 85], which disagree with the results of Kleemann et al [8], and who
conclude ‘. . . one needs to use great caution in interpreting the details of the T -dependent
polarization in terms of critical phenomena’ in this material, and stress that uniaxial SBN is
very unlike the pseudo-cubic relaxors of the PMN (lead magnesium niobate) family. Note
that the long tail and detailed shape measured by Chao et al for the order parameter versus T
above Tc strongly resemble that in figure 7.2 from [17]; this is analogous to the temperature
dependence of magnetization Mk(T ) for a ferromagnet in an applied conjugate field Hk .

Finally, table 1 includes a listing in conventional notation of all the non-universal ‘critical’
exponents from the Levanyuk–Sigov defect theory; readers of [17] will find that this was not a
trivial chore.
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